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Design is Crucial
The most important ingredient 
in ensuring a software system’s 
long-term success is its design ”

“

ICSE’11 c.f.p

• A good design improves

• collaboration

• productivity

• maintenance
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Design Framework

A good design requires a design framework 
which guides the architect with

• a language

• a paradigm
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Programming Framework

• abstractions

• services

4

A good implementation requires a 
programming framework which 
guides the developer with
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Conformance
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An implementation must conform to its design
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Requirements

1. A design framework to guide the architect

2. A programming framework to guide the 
developer

3. A guaranteed conformance of the 
implementation relatively to the design

6

Conformance
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Design

Implementation

Conformance

Related Works

Conformance
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GPL

Design

Implementation

Conformance

+
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GPL Library

Design

Implementation

Conformance

+ ++
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Conformance
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GPL Library ADL

Design

Implementation

Conformance

++

+ ++

Related Works
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GPL Library ADL ADL++

Design

Implementation

Conformance

++ +

+ ++ +

+

Related Works

ArchJava

Conformance
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A paradigm-oriented framework for 
both design and implementation 
which maintains conformance all 

along the software life-cycle

12

Thesis
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The Paradigm
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applications that interact
with an environment

“ ”

Environment

Sense/Compute/Control (SCC)
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The SCC Paradigm
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Environment

sense

compute

control
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The SCC Paradigm
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sense

compute

control

compute
direction

control aileron, 
engine

GPS,
flight plan
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The SCC Paradigm
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Environment

sense

compute

control

motion detection

intrusion?

trigger alarms
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The SCC Paradigm
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Covers various domains

• pervasive computing

• tier-system monitoring

• avionics

• robotics

• ...

Environment
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Contributions
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1. A paradigm-specific design framework

2. A programming framework dedicated to a design

3. An evaluation of the approach

Friday, March 25, 2011



Contributions
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1. A paradigm-specific design framework

2. A programming framework dedicated to a design

3. An evaluation of the approach
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Design Language

20

Environment

orders
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Design Language
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Environment

orders
• sources sense the environment

sources
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Design Language
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Environment
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• sources sense the environment

sources

actions

• actions impact the environment
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Design Language

20

Environment

orders

a concept for handling 
the interaction with 

the  environment

• sources sense the environment
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Design Language

20

Environment

orders

a concept for handling 
the interaction with 

the  environment

Entities

entity Keypad {
 source keycode as Integer;
 action UpdateSt;
}

action UpdateSt {
 updateStatus(message as String);
}

• sources sense the environment

sources

actions

• actions impact the environment
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Design Language
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Environment

orders

sources

actions
Entities

1 entity description for 
potentially many 
implementations

entity Keypad {
 source keycode as Integer;
 action UpdateSt;
}

action UpdateSt {
 updateStatus(message as String);
}

a concept for handling 
the interaction with 

the  environment
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Design Language
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Environment

orders

sources

actions
Entities

entity Keypad {
 source keycode as Integer;
 action UpdateSt;
}

action UpdateSt {
 updateStatus(message as String);
}

a concept for handling 
the interaction with 

the  environment

1 entity description for 
potentially many instances
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Design Language
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Environment

orders

sources

actions
Entities

entity Keypad {
 source keycode as Integer;
 action UpdateSt;
 attribute room as Integer;
}
action UpdateSt {
 updateStatus(message as String);
}

➡ attributes to characterize instances
(color, location, reliability, etc.)

1 entity description for 
potentially many instances

Friday, March 25, 2011



Design Language
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Environment

orders

raw data a concept to 
refine raw data

sources

actions
Entities
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Design Language
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Environment

orders

raw data

context
operators

a concept to 
refine raw data

refined
information

sources

actions
Entities

context BuildingSecured as Boolean {
  source keycode from Keypad;
}
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Design Language

25

Environment

orders

raw data

context
operators

refined
information

sources

actions
Entities

a concept to take 
decisions based on 

application-level data
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Design Language

25

Environment

orders

raw data

context
operators

refined
information

sources

actions
Entities

controller BuildingManager {
  context BuildingSecured;
  action UpdateSt on Keypad;
}

control
operators

orders

a concept to take 
decisions based on 

application-level data
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Design Language
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Environment

orders

raw data

context
operators

sources

control
operators

refined
information

orders

actions
Entities

Sense

Compute

Control

The language features concepts 
dedicated to the SCC paradigm
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Environment

orders

context
operators

sources

control
operators

refined
information

actions
Entities

Environment handlingApplication logic
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orders

context
operators

control
operators

refined
information

Information use

Information creation
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Design Language
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Environment

orders

raw data

context
operators

sources

control
operators

refined
information

orders

actions
Entities
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orders
sources

control
operators

actions

context
operators

Design Language
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orders

context
operators

control
operators
control

operators

sources

context
operators

actions

Design Language
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Case Study: Anti-Intrusion
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context
operators

control
operators

actions

sources
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Case Study: Anti-Intrusion
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context
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Case Study: Anti-Intrusion
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Case Study: Anti-Intrusion
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Case Study: Anti-Intrusion

34

Building
Secured Presence

Intrusion
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Case Study: Anti-Intrusion
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Case Study: Anti-Intrusion

35

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

possible
interpretations

the architect should express 
what he has in mind

Friday, March 25, 2011



Case Study: Anti-Intrusion

35

Building
Secured Presence
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Building
Secured Presence

Intrusion

Building
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Building
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Intrusion

possible
interpretations

the architect should express 
what he has in mind

➡interaction contracts
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Interaction Contracts

36

context
operator
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Interaction Contracts
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Activation condition1

context
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Interaction Contracts
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Activation condition1
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Interaction Contracts
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Activation condition1

Data requirement2 context
operator

Entity
source context

operator

1event 2

request
2

request
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Interaction Contracts

36

Activation condition1

Data requirement2

Emission3

context
operator

Entity
source context

operator

1event 2

request
2

request

3 event
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Interaction Contracts
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Activation condition1

Data requirement2

Emission3
Building
Secured Presence

Intrusion

context Intrusion as Boolean {
 context Presence;
 context BuildingSecured;
 interaction {
  when provided Presence
  get BuildingSecured
  maybe publish
 }
}
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Interaction Contracts

37

Activation condition1

Data requirement2

Emission3
Building
Secured Presence

Intrusion

1

context Intrusion as Boolean {
 context Presence;
 context BuildingSecured;
 interaction {
  when provided Presence
  get BuildingSecured
  maybe publish
 }
}

1
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Interaction Contracts

37

Activation condition1

Data requirement2

Emission3
Building
Secured Presence

Intrusion

12

context Intrusion as Boolean {
 context Presence;
 context BuildingSecured;
 interaction {
  when provided Presence
  get BuildingSecured
  maybe publish
 }
}

1
2
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Interaction Contracts

37

Activation condition1

Data requirement2

Emission3
Building
Secured Presence

Intrusion

12

3

context Intrusion as Boolean {
 context Presence;
 context BuildingSecured;
 interaction {
  when provided Presence
  get BuildingSecured
  maybe publish
 }
}

1
2
3
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Interaction Contracts

37

Activation condition1

Data requirement2

Emission3
Building
Secured Presence

Intrusion

12

3

context Intrusion as Boolean {
 context Presence;
 context BuildingSecured;
 interaction {
  when provided Presence
  get BuildingSecured
  maybe publish
 }
}

1
2
3 related to automata 

approaches
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Summary

A design framework consisting of a design language, DiaSpec, 
which guides the architect by offering

• concepts dedicated to the SCC paradigm

• a separation between environment handling and logic

• a separation between information creation and use

• a dedicated description of interactions

38
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Contributions
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1. A paradigm-specific design framework

2. A programming framework dedicated to a design

3. An evaluation of the approach
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A Programming Framework

40

Generated from the Design

GPLDiaSpec
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A Programming Framework

40

• separates 2 different roles with 2 different languages

• leverages GPL tools, libraries and expertise

• ensures conformance automatically

Generated from the Design

GPLDiaSpec

Friday, March 25, 2011
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A Programming Framework

how to make a programming 
framework conform to a 

particular design? 
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A Programming Framework

The code generator maps
• each description to an abstract class
• each interaction contract to an abstract method

Friday, March 25, 2011
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A Programming Framework

The code generator maps
• each description to an abstract class
• each interaction contract to an abstract method

By leveraging the GPL type checker, the framework
• guides the implementation of what is required
• forbids anything not specified in the design
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A Programming Framework

The code generator maps
• each description to an abstract class
• each interaction contract to an abstract method

different than what is 
proposed by ADLs or MDE

By leveraging the GPL type checker, the framework
• guides the implementation of what is required
• forbids anything not specified in the design

Friday, March 25, 2011
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Generation
context Presence as Boolean {
  source motion from MotionSensor;
  interaction {
    when provided motion from MotionSensor
    get motion from MotionSensor
    always publish
  }
}

abstract class AbstractPresence {
  abstract boolean onMotionFromMotionSensor(
                        boolean motion, Select select);
}

MotionSensor
motion

Presence
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abstract class AbstractPresence {
  abstract boolean onMotionFromMotionSensor(
                        boolean motion, Select select);
}
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Generation
context Presence as Boolean {
  source motion from MotionSensor;
  interaction {
    when provided motion from MotionSensor
    get motion from MotionSensor
    always publish
  }
}

①

①

MotionSensor
motion

Presence
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abstract class AbstractPresence {
  abstract boolean onMotionFromMotionSensor(
                        boolean motion, Select select);
}

46

Generation
context Presence as Boolean {
  source motion from MotionSensor;
  interaction {
    when provided motion from MotionSensor
    get motion from MotionSensor
    always publish
  }
}

①
②

①
②

according to the 
interaction contract

MotionSensor
motion

Presence
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abstract class AbstractPresence {
  abstract boolean onMotionFromMotionSensor(
                        boolean motion, Select select);
}

47

Generation
context Presence as Boolean {
  source motion from MotionSensor;
  interaction {
    when provided motion from MotionSensor
    get motion from MotionSensor
    always publish
  }
}

①

①

②
③

③ ②

MotionSensor
motion

Presence
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Implementing the Behavior
context Presence as Boolean {
  source motion from MotionSensor;
  interaction {
    when provided motion from MotionSensor
    get motion from MotionSensor
    always publish
  }
}

abstract class AbstractPresence {
 abstract boolean onMotionFromMotionSensor(
           boolean motion, Select select);
}

class Presence extends AbstractPresence {
 boolean onMotionFromMotionSensor(
             boolean motion, Select select) {
  return motion;
 }
}

Friday, March 25, 2011
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The developer needs to ask all motion sensors

Implementing the Behavior

class Presence extends AbstractPresence {
 boolean onMotionFromMotionSensor(
             boolean motion, Select select) {
  return motion;
 }
}

when motion is detected ➡ there is presence

when motion is not detected? ➡ ?

Friday, March 25, 2011
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Entity Selection

Required when an entity 
is the interaction’s target

Guide the developer with an 
embedded and type-safe DSL
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Entity Selection

select.motionSensors().all()
Select all motion sensors:

entity MotionSensor {
	 source motion as Boolean;
   attribute room as Integer;
}

Friday, March 25, 2011
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Entity Selection

select.motionSensors().whereRoom(between(1,3))

entity MotionSensor {
	 source motion as Boolean;
   attribute room as Integer;
}

Select all motion sensors in rooms 1 to 3:

room = 1 room = 2 room = 3

room = 4room = 0

1 2 3

40
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Commanding Entities

select.alarms().all().on();

entity Alarm {    action OnOff {
  action OnOff;     on();
}                   off();
                  }

Triggering all alarms:

room = 4room = 0

Friday, March 25, 2011
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Entity Selection Conformance

select.alarms().all().start();

entity Alarm {    action OnOff {
  action OnOff;     on();
}                   off();
                  }

It is not possible to send unsupported orders:

room = 4room = 0

compile-time
error

Conformance
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Entity Selection

select.alarms().all();
It is not possible to discover all kinds of entities:

room = 4room = 0

context Presence as Boolean {
  source motion from MotionSensor;
  interaction {
    when provided motion from MotionSensor
    get motion from MotionSensor
    always publish
  }
}

Presence

MotionSensor
motion

compile-time
error

Conformance
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Implementing the Behavior
context Presence as Boolean {
  source motion from MotionSensor;
  interaction {
    when provided motion from MotionSensor
    get motion from MotionSensor
    always publish
  }
}

abstract class AbstractPresence {
  abstract boolean onMotionFromMotionSensor(...);
}

class Presence extends AbstractPresence {
  boolean onMotionFromMotionSensor(
                       boolean motion, Select select) {
    if (motion)
      return true;
    MotionSensors sensors = select.motionSensors().all();
    for (MotionSensor sensor : sensors)
      if (sensor.getMotion())
        return true;
    return false;
  }
}
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Summary

The developer is guided with

• a support dedicated to the application
• an embedded DSL for entity selection

Conformance is ensured by

• generating a programming framework

• leveraging a GPL type checker

57

Conformance
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Contributions

58

1. A paradigm-specific design framework

2. A programming framework dedicated to a design

3. An evaluation of the approach
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Evaluation of the Approach

• Expressiveness

• Usability

• Productivity

59
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Evaluation: Expressiveness

Numerous domains

• home-automation

• avionics

• graphical user interfaces

• health-care

• telecommunications

• tier-system monitoring

• etc.

60
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Evaluation: Usability

Context

• 80 students during 3 years

• sparse and oral-only documentation

Results

• 64 students completed the assignment

• Identification of the interaction contracts

61
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Evaluation: Productivity
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We measured the 
amount of  code 

generated automatically
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Evaluation: Productivity
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Framework
82%

Implementation
10%

Specification
8%
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Evaluation: Productivity

63

Framework
82%

Implementation
10%

Specification
8%

➡ 76% actually executed
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Evaluation: Productivity
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Complexity of the developer’s code

We used the Sonar platform 
to measure code quality 

through numerous metrics
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Evaluation: Productivity
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Complexity of the developer’s code

 number of linearly 
independent paths 
in a source code
“

”
McCabe cyclomatic 

complexity
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Evaluation: Productivity
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Complexity of the developer’s code

 number of linearly 
independent paths 
in a source code
“

”
McCabe cyclomatic 

complexity

∞3 7 101
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Evaluation: Productivity
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Complexity of the developer’s code

 number of linearly 
independent paths 
in a source code
“

”
McCabe cyclomatic 
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Summary

• The approach covers various domains

• The frameworks are easy to use

• Few code is required and this code is of good quality
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Pursuing this evaluation with software engineers
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Results
Scientific contributions

• A design language dedicated to SCC (ICSE’11)

• The generation of a dedicated programming framework (GPCE’09)

• The evaluation of this approach (submitted)

Technical contributions

• A compiler for the design language (9 KLoC)

• A code generator targeting Java (4 KLoC)

Dissemination

• Demonstrations (PerCom’10), posters (SPLASH’10), visits (Bern, Potsdam)

• Public release (http://diasuite.inria.fr)
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Conformance
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A Research Vehicle
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This design language and code generator are part of a 
research project which involves

• 4 industrial partnerships

• 2 other research groups

• > 20 real applications

• 24/7 running platform

• 28,000 lines of code
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A Research Vehicle
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7 PhD students leveraging DiaSpec and the generator

• QoS (FASE’11)

• error-handling (OOPSLA’10)

• virtual testing (Mobiquitous’09 and ’10)

• SIP (ICC’10, ICIN’09, IPTComm’08)

• end-user programming (DSLWC’09)

• security (ICPS’09)
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Perspectives

69

requirements design code testing maintenance

• Can we transpose the approach to another paradigm?

• Can we support other stages of the software life-cycle?

• Can we help creating such approaches?
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Facilitating Evolution
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• eases developer’s work by
• showing mismatches
• leveraging development tools

• ensures conformance all along the software life-cycle

Friday, March 25, 2011


