
Leveraging Software Design
 to Guide the Development of

Sense/Compute/Control Applications

Damien Cassou

Friday, March 25, 2011

2

Design is Crucial
The most important ingredient
in ensuring a software system’s
long-term success is its design ”

“

ICSE’11 c.f.p

• A good design improves

• collaboration

• productivity

• maintenance

n536

[name > len]
run_arch()

[name <= len]
stop_arch()

n1704

start()

n822

n1155: lf

n1303
error_mark

ArcCond

visb: string = unk
n1304: Block

ArcCond

op: string = fct_call
n1702: Operator

op: string = fct_call
n1834: Operator

ArcCond ArcCond

n1966
ualFctParam

ArcOpd[2]

n7848
NameRef

ArcOpd[1]

name: string = exit
visb: string = pub
virtual: string = non-virtual

n391: Function

RefersTo

n7848
NameRef

RefersTo

n7840
NameRef

RefersTo

name: string = void
visb: string = unk

n27: BuiltinType

Instance

n324
Block

ArcCond

n162
ForLoop

ArcSon

name: string = done
visb: string = unk
static: bool = false
extern: bool = false
const: bool false

n471: Object

ArcSon[1]

name: string = done
n7846: NameRef
RefersTo

name: string = done
n7828: NameRef

RefersTo

value: string = 0
n64: Literal

ArcSon[2]

value: string = len
n7820: NameRef

RefersTo

<< ActionState >>
Suggest Itineraries

<<StartState . ActionState >>
success

Try Again

<< EndState >>

error

<< ViewState >>
Display Itineraries

success

Cancel

<< EndState >>
startOver

<< ActionState >>
Select Itineraries

success

<< SubFlowState >>
Choose Itineraries

<< ActionState >>
Book Itineraries

assign book

finish

Confirmation

success

Friday, March 25, 2011

3

Design Framework

A good design requires a design framework
which guides the architect with

• a language

• a paradigm

n536

[name > len]
run_arch()

[name <= len]
stop_arch()

n1704

start()

n822

n1155: lf

n1303
error_mark

ArcCond

visb: string = unk
n1304: Block

ArcCond

op: string = fct_call
n1702: Operator

op: string = fct_call
n1834: Operator

ArcCond ArcCond

n1966
ualFctParam

ArcOpd[2]

n7848
NameRef

ArcOpd[1]

name: string = exit
visb: string = pub
virtual: string = non-virtual

n391: Function

RefersTo

n7848
NameRef

RefersTo

n7840
NameRef

RefersTo

name: string = void
visb: string = unk

n27: BuiltinType

Instance

n324
Block

ArcCond

n162
ForLoop

ArcSon

name: string = done
visb: string = unk
static: bool = false
extern: bool = false
const: bool false

n471: Object

ArcSon[1]

name: string = done
n7846: NameRef
RefersTo

name: string = done
n7828: NameRef

RefersTo

value: string = 0
n64: Literal

ArcSon[2]

value: string = len
n7820: NameRef

RefersTo

<< ActionState >>
Suggest Itineraries

<<StartState . ActionState >>
success

Try Again

<< EndState >>

error

<< ViewState >>
Display Itineraries

success

Cancel

<< EndState >>
startOver

<< ActionState >>
Select Itineraries

success

<< SubFlowState >>
Choose Itineraries

<< ActionState >>
Book Itineraries

assign book

finish

Confirmation

success

Friday, March 25, 2011

Programming Framework

• abstractions

• services

4

A good implementation requires a
programming framework which
guides the developer with

Friday, March 25, 2011

Conformance

5

An implementation must conform to its design

n536

[name > len]
run_arch()

[name <= len]
stop_arch()

n1704

start()

n822

n1155: lf

n1303
error_mark

ArcCond

visb: string = unk
n1304: Block

ArcCond

op: string = fct_call
n1702: Operator

op: string = fct_call
n1834: Operator

ArcCond ArcCond

n1966
ualFctParam

ArcOpd[2]

n7848
NameRef

ArcOpd[1]

name: string = exit
visb: string = pub
virtual: string = non-virtual

n391: Function

RefersTo

n7848
NameRef

RefersTo

n7840
NameRef

RefersTo

name: string = void
visb: string = unk

n27: BuiltinType

Instance

n324
Block

ArcCond

n162
ForLoop

ArcSon

name: string = done
visb: string = unk
static: bool = false
extern: bool = false
const: bool false

n471: Object

ArcSon[1]

name: string = done
n7846: NameRef
RefersTo

name: string = done
n7828: NameRef

RefersTo

value: string = 0
n64: Literal

ArcSon[2]

value: string = len
n7820: NameRef

RefersTo

<< ActionState >>
Suggest Itineraries

<<StartState . ActionState >>
success

Try Again

<< EndState >>

error

<< ViewState >>
Display Itineraries

success

Cancel

<< EndState >>
startOver

<< ActionState >>
Select Itineraries

success

<< SubFlowState >>
Choose Itineraries

<< ActionState >>
Book Itineraries

assign book

finish

Confirmation

success

Friday, March 25, 2011

Requirements

1. A design framework to guide the architect

2. A programming framework to guide the
developer

3. A guaranteed conformance of the
implementation relatively to the design

6

Conformance

Friday, March 25, 2011

7

Design

Implementation

Conformance

Related Works

Conformance

Friday, March 25, 2011

8

GPL

Design

Implementation

Conformance

+

Related Works

Java

Conformance

Friday, March 25, 2011

9

GPL Library

Design

Implementation

Conformance

+ ++

Related Works

Spring

Conformance

Friday, March 25, 2011

10

GPL Library ADL

Design

Implementation

Conformance

++

+ ++

Related Works

C2

Conformance

Friday, March 25, 2011

11

GPL Library ADL ADL++

Design

Implementation

Conformance

++ +

+ ++ +

+

Related Works

ArchJava

Conformance

Friday, March 25, 2011

A paradigm-oriented framework for
both design and implementation
which maintains conformance all

along the software life-cycle

12

Thesis

Friday, March 25, 2011

The Paradigm

13

applications that interact
with an environment

“ ”

Environment

Sense/Compute/Control (SCC)

Friday, March 25, 2011

The SCC Paradigm

14

Environment

sense

compute

control

Friday, March 25, 2011

The SCC Paradigm

15

sense

compute

control

compute
direction

control aileron,
engine

GPS,
flight plan

Friday, March 25, 2011

The SCC Paradigm

16

Environment

sense

compute

control

motion detection

intrusion?

trigger alarms
Friday, March 25, 2011

The SCC Paradigm

17

Covers various domains

• pervasive computing

• tier-system monitoring

• avionics

• robotics

• ...

Environment

Friday, March 25, 2011

Contributions

18

1. A paradigm-specific design framework

2. A programming framework dedicated to a design

3. An evaluation of the approach

Friday, March 25, 2011

Contributions

19

1. A paradigm-specific design framework

2. A programming framework dedicated to a design

3. An evaluation of the approach

Friday, March 25, 2011

Design Language

20

Environment

orders

Friday, March 25, 2011

Design Language

20

Environment

orders
• sources sense the environment

sources

Friday, March 25, 2011

Design Language

20

Environment

orders
• sources sense the environment

sources

actions

• actions impact the environment

Friday, March 25, 2011

Design Language

20

Environment

orders

a concept for handling
the interaction with

the environment

• sources sense the environment

sources

actions

• actions impact the environment

Friday, March 25, 2011

Design Language

20

Environment

orders

a concept for handling
the interaction with

the environment

Entities

entity Keypad {
 source keycode as Integer;
 action UpdateSt;
}

action UpdateSt {
 updateStatus(message as String);
}

• sources sense the environment

sources

actions

• actions impact the environment

Friday, March 25, 2011

Design Language

21

Environment

orders

sources

actions
Entities

1 entity description for
potentially many
implementations

entity Keypad {
 source keycode as Integer;
 action UpdateSt;
}

action UpdateSt {
 updateStatus(message as String);
}

a concept for handling
the interaction with

the environment

Friday, March 25, 2011

Design Language

22

Environment

orders

sources

actions
Entities

entity Keypad {
 source keycode as Integer;
 action UpdateSt;
}

action UpdateSt {
 updateStatus(message as String);
}

a concept for handling
the interaction with

the environment

1 entity description for
potentially many instances

Friday, March 25, 2011

Design Language

23

Environment

orders

sources

actions
Entities

entity Keypad {
 source keycode as Integer;
 action UpdateSt;
 attribute room as Integer;
}
action UpdateSt {
 updateStatus(message as String);
}

➡ attributes to characterize instances
(color, location, reliability, etc.)

1 entity description for
potentially many instances

Friday, March 25, 2011

Design Language

24

Environment

orders

raw data a concept to
refine raw data

sources

actions
Entities

Friday, March 25, 2011

Design Language

24

Environment

orders

raw data

context
operators

a concept to
refine raw data

refined
information

sources

actions
Entities

context BuildingSecured as Boolean {
 source keycode from Keypad;
}

Friday, March 25, 2011

Design Language

25

Environment

orders

raw data

context
operators

refined
information

sources

actions
Entities

a concept to take
decisions based on

application-level data

Friday, March 25, 2011

Design Language

25

Environment

orders

raw data

context
operators

refined
information

sources

actions
Entities

controller BuildingManager {
 context BuildingSecured;
 action UpdateSt on Keypad;
}

control
operators

orders

a concept to take
decisions based on

application-level data

Friday, March 25, 2011

Design Language

26

Environment

orders

raw data

context
operators

sources

control
operators

refined
information

orders

actions
Entities

Sense

Compute

Control

The language features concepts
dedicated to the SCC paradigm

Friday, March 25, 2011

27

Environment

orders

context
operators

sources

control
operators

refined
information

actions
Entities

Environment handlingApplication logic

Friday, March 25, 2011

28

orders

context
operators

control
operators

refined
information

Information use

Information creation

Friday, March 25, 2011

Design Language

29

Environment

orders

raw data

context
operators

sources

control
operators

refined
information

orders

actions
Entities

Friday, March 25, 2011

30

orders
sources

control
operators

actions

context
operators

Design Language

Friday, March 25, 2011

31

orders

context
operators

control
operators
control

operators

sources

context
operators

actions

Design Language

Friday, March 25, 2011

Case Study: Anti-Intrusion

32

context
operators

control
operators

actions

sources
Friday, March 25, 2011

Case Study: Anti-Intrusion

32

context
operators

control
operators

actions

sources

Intrusion

Friday, March 25, 2011

Case Study: Anti-Intrusion

32

context
operators

control
operators

actions

sources

Intrusion

Intrusion
Manager

Alarm
OnOff

Friday, March 25, 2011

Case Study: Anti-Intrusion

32

context
operators

control
operators

actions

sources

Intrusion

Building
Secured

Presence

Intrusion
Manager

Alarm
OnOff

Friday, March 25, 2011

Case Study: Anti-Intrusion

32

context
operators

control
operators

actions

sources

Intrusion

Keypad
keycode

MotionSensor
motion

Building
Secured

Presence

Intrusion
Manager

Alarm
OnOff

Friday, March 25, 2011

Case Study: Anti-Intrusion

32

context
operators

control
operators

actions

sources

Intrusion

Keypad
keycode

MotionSensor
motion

Building
Secured

Presence

Security
Manager

Keypad
UpdateSt

Intrusion
Manager

Alarm
OnOff

Friday, March 25, 2011

Case Study: Anti-Intrusion

32

context
operators

control
operators

actions

sources

Intrusion

Keypad
keycode

Camera
image

MotionSensor
motion

Building
Secured

Presence Scene
Image

Security
Manager

Keypad
UpdateSt

Intrusion
Manager

Alarm
OnOff

Mailer
Send

Friday, March 25, 2011

Case Study: Anti-Intrusion

33

context
operators

control
operators

actions

sources

Intrusion

Keypad
keycode

Camera
image

MotionSensor
motion

Building
Secured

Presence Scene
Image

Security
Manager

Keypad
UpdateSt

Intrusion
Manager

Alarm
OnOff

Mailer
Send

Friday, March 25, 2011

Case Study: Anti-Intrusion

34

Building
Secured Presence

Intrusion

Friday, March 25, 2011

Case Study: Anti-Intrusion

34

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

what the architect
has in mind

Friday, March 25, 2011

Case Study: Anti-Intrusion

34

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

what the architect
has in mind

Friday, March 25, 2011

Case Study: Anti-Intrusion

34

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

what the architect
has in mind

Friday, March 25, 2011

Case Study: Anti-Intrusion

35

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

possible
interpretations

Friday, March 25, 2011

Case Study: Anti-Intrusion

35

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

possible
interpretations

Friday, March 25, 2011

Case Study: Anti-Intrusion

35

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

possible
interpretations

Friday, March 25, 2011

Case Study: Anti-Intrusion

35

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

possible
interpretations

Friday, March 25, 2011

Case Study: Anti-Intrusion

35

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

possible
interpretations

Friday, March 25, 2011

Case Study: Anti-Intrusion

35

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

possible
interpretations

Friday, March 25, 2011

Case Study: Anti-Intrusion

35

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

possible
interpretations

Friday, March 25, 2011

Case Study: Anti-Intrusion

35

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

possible
interpretations

Friday, March 25, 2011

Case Study: Anti-Intrusion

35

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

possible
interpretations

the architect should express
what he has in mind

Friday, March 25, 2011

Case Study: Anti-Intrusion

35

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

Building
Secured Presence

Intrusion

possible
interpretations

the architect should express
what he has in mind

➡interaction contracts
Friday, March 25, 2011

Interaction Contracts

36

context
operator

Friday, March 25, 2011

Interaction Contracts

36

Activation condition1

context
operator

1
request

Friday, March 25, 2011

Interaction Contracts

36

Activation condition1

context
operator

1event

Friday, March 25, 2011

Interaction Contracts

36

Activation condition1

Data requirement2 context
operator

Entity
source context

operator

1event 2

request
2

request

Friday, March 25, 2011

Interaction Contracts

36

Activation condition1

Data requirement2

Emission3

context
operator

Entity
source context

operator

1event 2

request
2

request

3 event

Friday, March 25, 2011

Interaction Contracts

37

Activation condition1

Data requirement2

Emission3
Building
Secured Presence

Intrusion

context Intrusion as Boolean {
 context Presence;
 context BuildingSecured;
 interaction {
 when provided Presence
 get BuildingSecured
 maybe publish
 }
}

Friday, March 25, 2011

Interaction Contracts

37

Activation condition1

Data requirement2

Emission3
Building
Secured Presence

Intrusion

1

context Intrusion as Boolean {
 context Presence;
 context BuildingSecured;
 interaction {
 when provided Presence
 get BuildingSecured
 maybe publish
 }
}

1

Friday, March 25, 2011

Interaction Contracts

37

Activation condition1

Data requirement2

Emission3
Building
Secured Presence

Intrusion

12

context Intrusion as Boolean {
 context Presence;
 context BuildingSecured;
 interaction {
 when provided Presence
 get BuildingSecured
 maybe publish
 }
}

1
2

Friday, March 25, 2011

Interaction Contracts

37

Activation condition1

Data requirement2

Emission3
Building
Secured Presence

Intrusion

12

3

context Intrusion as Boolean {
 context Presence;
 context BuildingSecured;
 interaction {
 when provided Presence
 get BuildingSecured
 maybe publish
 }
}

1
2
3

Friday, March 25, 2011

Interaction Contracts

37

Activation condition1

Data requirement2

Emission3
Building
Secured Presence

Intrusion

12

3

context Intrusion as Boolean {
 context Presence;
 context BuildingSecured;
 interaction {
 when provided Presence
 get BuildingSecured
 maybe publish
 }
}

1
2
3 related to automata

approaches

Friday, March 25, 2011

Summary

A design framework consisting of a design language, DiaSpec,
which guides the architect by offering

• concepts dedicated to the SCC paradigm

• a separation between environment handling and logic

• a separation between information creation and use

• a dedicated description of interactions

38

Friday, March 25, 2011

Contributions

39

1. A paradigm-specific design framework

2. A programming framework dedicated to a design

3. An evaluation of the approach

Friday, March 25, 2011

A Programming Framework

40

Generated from the Design

GPLDiaSpec

Friday, March 25, 2011

A Programming Framework

40

• separates 2 different roles with 2 different languages

• leverages GPL tools, libraries and expertise

• ensures conformance automatically

Generated from the Design

GPLDiaSpec

Friday, March 25, 2011

41

A Programming Framework

how to make a programming
framework conform to a

particular design?

Friday, March 25, 2011

42

A Programming Framework

The code generator maps
• each description to an abstract class
• each interaction contract to an abstract method

Friday, March 25, 2011

42

A Programming Framework

The code generator maps
• each description to an abstract class
• each interaction contract to an abstract method

By leveraging the GPL type checker, the framework
• guides the implementation of what is required
• forbids anything not specified in the design

Friday, March 25, 2011

42

A Programming Framework

The code generator maps
• each description to an abstract class
• each interaction contract to an abstract method

different than what is
proposed by ADLs or MDE

By leveraging the GPL type checker, the framework
• guides the implementation of what is required
• forbids anything not specified in the design

Friday, March 25, 2011

43

Generation
context Presence as Boolean {
 source motion from MotionSensor;
 interaction {
 when provided motion from MotionSensor
 get motion from MotionSensor
 always publish
 }
}

abstract class AbstractPresence {
 abstract boolean onMotionFromMotionSensor(
 boolean motion, Select select);
}

MotionSensor
motion

Presence

Friday, March 25, 2011

abstract class AbstractPresence {
 abstract boolean onMotionFromMotionSensor(
 boolean motion, Select select);
}

44

Generation
context Presence as Boolean {
 source motion from MotionSensor;
 interaction {
 when provided motion from MotionSensor
 get motion from MotionSensor
 always publish
 }
}

①

①

MotionSensor
motion

Presence

Friday, March 25, 2011

abstract class AbstractPresence {
 abstract boolean onMotionFromMotionSensor(
 boolean motion, Select select);
}

45

Generation
context Presence as Boolean {
 source motion from MotionSensor;
 interaction {
 when provided motion from MotionSensor
 get motion from MotionSensor
 always publish
 }
}

①

①

MotionSensor
motion

Presence

Friday, March 25, 2011

abstract class AbstractPresence {
 abstract boolean onMotionFromMotionSensor(
 boolean motion, Select select);
}

46

Generation
context Presence as Boolean {
 source motion from MotionSensor;
 interaction {
 when provided motion from MotionSensor
 get motion from MotionSensor
 always publish
 }
}

①
②

①
②

according to the
interaction contract

MotionSensor
motion

Presence

Friday, March 25, 2011

abstract class AbstractPresence {
 abstract boolean onMotionFromMotionSensor(
 boolean motion, Select select);
}

47

Generation
context Presence as Boolean {
 source motion from MotionSensor;
 interaction {
 when provided motion from MotionSensor
 get motion from MotionSensor
 always publish
 }
}

①

①

②
③

③ ②

MotionSensor
motion

Presence

Friday, March 25, 2011

48

Implementing the Behavior
context Presence as Boolean {
 source motion from MotionSensor;
 interaction {
 when provided motion from MotionSensor
 get motion from MotionSensor
 always publish
 }
}

abstract class AbstractPresence {
 abstract boolean onMotionFromMotionSensor(
 boolean motion, Select select);
}

class Presence extends AbstractPresence {
 boolean onMotionFromMotionSensor(
 boolean motion, Select select) {
 return motion;
 }
}

Friday, March 25, 2011

49

The developer needs to ask all motion sensors

Implementing the Behavior

class Presence extends AbstractPresence {
 boolean onMotionFromMotionSensor(
 boolean motion, Select select) {
 return motion;
 }
}

when motion is detected ➡ there is presence

when motion is not detected? ➡ ?

Friday, March 25, 2011

50

Entity Selection

Required when an entity
is the interaction’s target

Guide the developer with an
embedded and type-safe DSL

Friday, March 25, 2011

51

Entity Selection

select.motionSensors().all()
Select all motion sensors:

entity MotionSensor {
	 source motion as Boolean;
 attribute room as Integer;
}

Friday, March 25, 2011

52

Entity Selection

select.motionSensors().whereRoom(between(1,3))

entity MotionSensor {
	 source motion as Boolean;
 attribute room as Integer;
}

Select all motion sensors in rooms 1 to 3:

room = 1 room = 2 room = 3

room = 4room = 0

1 2 3

40

Friday, March 25, 2011

53

Commanding Entities

select.alarms().all().on();

entity Alarm { action OnOff {
 action OnOff; on();
} off();
 }

Triggering all alarms:

room = 4room = 0

Friday, March 25, 2011

54

Entity Selection Conformance

select.alarms().all().start();

entity Alarm { action OnOff {
 action OnOff; on();
} off();
 }

It is not possible to send unsupported orders:

room = 4room = 0

compile-time
error

Conformance

Friday, March 25, 2011

55

Entity Selection

select.alarms().all();
It is not possible to discover all kinds of entities:

room = 4room = 0

context Presence as Boolean {
 source motion from MotionSensor;
 interaction {
 when provided motion from MotionSensor
 get motion from MotionSensor
 always publish
 }
}

Presence

MotionSensor
motion

compile-time
error

Conformance

Friday, March 25, 2011

56

Implementing the Behavior
context Presence as Boolean {
 source motion from MotionSensor;
 interaction {
 when provided motion from MotionSensor
 get motion from MotionSensor
 always publish
 }
}

abstract class AbstractPresence {
 abstract boolean onMotionFromMotionSensor(...);
}

class Presence extends AbstractPresence {
 boolean onMotionFromMotionSensor(
 boolean motion, Select select) {
 if (motion)
 return true;
 MotionSensors sensors = select.motionSensors().all();
 for (MotionSensor sensor : sensors)
 if (sensor.getMotion())
 return true;
 return false;
 }
}

Friday, March 25, 2011

Summary

The developer is guided with

• a support dedicated to the application
• an embedded DSL for entity selection

Conformance is ensured by

• generating a programming framework

• leveraging a GPL type checker

57

Conformance

Friday, March 25, 2011

Contributions

58

1. A paradigm-specific design framework

2. A programming framework dedicated to a design

3. An evaluation of the approach

Friday, March 25, 2011

Evaluation of the Approach

• Expressiveness

• Usability

• Productivity

59

Friday, March 25, 2011

Evaluation: Expressiveness

Numerous domains

• home-automation

• avionics

• graphical user interfaces

• health-care

• telecommunications

• tier-system monitoring

• etc.

60

Friday, March 25, 2011

Evaluation: Usability

Context

• 80 students during 3 years

• sparse and oral-only documentation

Results

• 64 students completed the assignment

• Identification of the interaction contracts

61

Friday, March 25, 2011

Evaluation: Productivity

62

We measured the
amount of code

generated automatically

Friday, March 25, 2011

Evaluation: Productivity

63

Framework
82%

Implementation
10%

Specification
8%

Friday, March 25, 2011

Evaluation: Productivity

63

Framework
82%

Implementation
10%

Specification
8%

➡ 76% actually executed

Friday, March 25, 2011

Evaluation: Productivity

64

Complexity of the developer’s code

We used the Sonar platform
to measure code quality

through numerous metrics

Friday, March 25, 2011

Evaluation: Productivity

64

Complexity of the developer’s code

 number of linearly
independent paths
in a source code
“

”
McCabe cyclomatic

complexity

Friday, March 25, 2011

Evaluation: Productivity

64

Complexity of the developer’s code

 number of linearly
independent paths
in a source code
“

”
McCabe cyclomatic

complexity

∞3 7 101

Friday, March 25, 2011

Evaluation: Productivity

64

Complexity of the developer’s code

 number of linearly
independent paths
in a source code
“

”
McCabe cyclomatic

complexity{quite well structured“ ”

∞3 7 101

Friday, March 25, 2011

Evaluation: Productivity

64

Complexity of the developer’s code

 number of linearly
independent paths
in a source code
“

”
McCabe cyclomatic

complexity{quite well structured“ ” very poor quality“ ”

∞3 7 101

Friday, March 25, 2011

Evaluation: Productivity

64

Complexity of the developer’s code

 number of linearly
independent paths
in a source code
“

”
McCabe cyclomatic

complexity{quite well structured“ ” very poor quality“ ”

∞3 7 101

on average

Friday, March 25, 2011

Summary

• The approach covers various domains

• The frameworks are easy to use

• Few code is required and this code is of good quality

65

Pursuing this evaluation with software engineers

Friday, March 25, 2011

Results
Scientific contributions

• A design language dedicated to SCC (ICSE’11)

• The generation of a dedicated programming framework (GPCE’09)

• The evaluation of this approach (submitted)

Technical contributions

• A compiler for the design language (9 KLoC)

• A code generator targeting Java (4 KLoC)

Dissemination

• Demonstrations (PerCom’10), posters (SPLASH’10), visits (Bern, Potsdam)

• Public release (http://diasuite.inria.fr)

66

Conformance

Friday, March 25, 2011

http://diasuite.inria.fr
http://diasuite.inria.fr

A Research Vehicle

67

This design language and code generator are part of a
research project which involves

• 4 industrial partnerships

• 2 other research groups

• > 20 real applications

• 24/7 running platform

• 28,000 lines of code

Friday, March 25, 2011

A Research Vehicle

68

7 PhD students leveraging DiaSpec and the generator

• QoS (FASE’11)

• error-handling (OOPSLA’10)

• virtual testing (Mobiquitous’09 and ’10)

• SIP (ICC’10, ICIN’09, IPTComm’08)

• end-user programming (DSLWC’09)

• security (ICPS’09)

Friday, March 25, 2011

Perspectives

69

requirements design code testing maintenance

• Can we transpose the approach to another paradigm?

• Can we support other stages of the software life-cycle?

• Can we help creating such approaches?

Friday, March 25, 2011

70

Friday, March 25, 2011

Facilitating Evolution

71

• eases developer’s work by
• showing mismatches
• leveraging development tools

• ensures conformance all along the software life-cycle

Friday, March 25, 2011

